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Abstract

The separation of vectors by multigrid (MG) algorithms is applied to the study of

convergence and to the prediction of the performance of gig algorithms. The separation

operator for a two level cycle algorithm is derived. It is used to analyze the efficiency of the

cycle when mixing of eigenvectors occurs. In particular cases the separation analysis reduces

to Fourier type analysis. The separation operator of a two level cycle for a Schr6dinger

eigenvalue problem, is derived and analyzed in a Fourier basis. Separation analysis gives

information on how to chose relaxations and inter-level transfers. Separation analysis is a

tool for analyzing and designing algorithms, and for optimizing their performance.
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1 Introduction

The efficiency of multigrid (MG) techniques in solving large scale eigenvalue problems de-

rived from discretizations of partial differential eigenvalue problems, was shown in multiple

works, for example in [1] [3] [13] [16] [18] [20] [21] [271.

This work is motivated by the need of tools of analyzing, and designing robust and

efficient MG eigenvalue solvers. These tools were needed for the algorithms presented in

[4], [:5] [6] [19] [24] and in the reports [7] [8] [9] [10]. The algorithms were applied to elec-

tromagnetism and SchrSdinger eigenvalue problems in 2D and 3D. Their efficiency resides

in their eigenvector separation effectiveness, i.e., in how welt they separate the subspace of

desired eigenvectors from the remaining eigenvectors and how well they separate the eigen-

vectors inside this subspace. These naturally hint to analyze how a procedure separates

given eigenvectors, i.e., how it acts on the amplitudes of the eigenvectors, or more generally

on the amplitudes of a basis of vectors. The action of an algorithm on the amplitudes of

the vectors of a basis is called the separation operator. Separation factors, showing the

amplification of one vector with respect to another one, can be used to define and analyze

different convergence rates. In particular cases, Fourier analysis can be used to compute

separation factors. Separation analysis does not reduce to convergence analysis only; for

example, one may have divergence of relaxations but good separation, and separation de-

termines the efficiency of the algorithm. Convergence results are obtained, which can be

applied directly to show the convergence of single level or multilevel algorithms. The results

are used for the analysis of a two level separation operator which defines the action of a

two level algorithm on the amplitudes of given vectors. For eigenvalue problems, a major

issue is the "mixing" of eigenvectors due to inter-level transfers. It is shown that better

convergence is obtained if the mixing is small or when all eigenvectors which get mixed are

treated together, e.g., in case of clusters.

An example of separation analysis which reduces to a Fourier type analysis of the two

level separation operator is presented. This is used in the design of MG eigenvector algo-

rithms and in the prediction of their performance. For the SchrSdinger eigenvalue problem

with periodic boundary conditions, the analysis calculates accurately the convergence fac-

tors. The matrix of the separation operator can be computed by a subroutine and the

efficiency of the algorithm can be optimized analyzing the separation operator as a func-

tion of several parameters such as relaxation types, iteration numbers.

For MG techniques and more on MG eigenvahm algorithms we refer to [2] [3] [16]. An

outline of general MG approaches related to separation and MG optimization is presented

in [12] [25]. For eigenvalue algorithms and theory on algebraic eigenvalue problems we refer

to [17] [23] [26] [14].



2 The Separation Operator, Separation Factors and

Convergence Rates

A central goal is to analyze the action of an algorithm on the amplitudes of given vectors,

for example oil the eigenvectors of a given matrix. This action is defined by the separation

operator. The separation operator can be used in the analysis of convergence and in the

optimization of the algorithm.

2.1 The Separation Operator and Separation Factors

Assume that the n × n matrix U has independent columns U1, ...,/-_. For example/_Jr,- may

be Fourier components or the eigenvectors of a given matrix. Assume that an algorithm

transforms the vector UB into the vector U/), where B and/) denote vectors of dimension

n. Thus B and/) are the amplitudes of/71,..., U, before and after the algorithm is applied.

The algorithm defines a mapping

WB :/) (2.1)

W is the mapping of the amplitudes of the vectors U under the action of the algorithm.

The mapping W will be called the Separation Operator. The W may not be linear, e.g.,

for MG algorithms which employ projections. For particular MG cycles W is linear and

will be computed in next sections.

Consider further the case when W is an n × n diagonalizable matrix with normalized

eigenvectors El, ..., E_ corresponding to the eigenvalues Pl, ...,p_. For simplicity assume

that 1//1] :> ],H21 > .-. _> ]_n] > 0, although the further analysis can be performed in a

similar way for the general case too. E1 will be called the dominant eigenvector of W.

For given vectors B = (ba,...,b,d T, B = WB = (bl, ...,_,_)T define the separation

factor of/:-, relative to 1:3 and to B by

sij,B = (bi/Dj)/(bi/bj) (2.2)

when this is meaningful, (i.e., when bj # O, bj # 0, or define 0 and oc values when only one

is 0). Implicitly. the sij,B depends on W also.

It will be said that [_ is amplified by B if bi # O. Denote by %r, the p'th component of

the eigenvector Era. Define the asymptotic separation factor of b; relative to b) by:

sij = It_/pl (2.3)

,,'here I = min{m : e,,_ :/; 0} and l= rnin{rn : ejm ¢ 0}. The t and /in the definition of

s,j, show the first (smallest index) eigenvectors Et and Et which amplify b}, respectively



(,_. It will be also said that Et is the first eigenvector amplifying Ui. If Et is the eigenvector

amplifying first both/[,] and Uj then

8ij ----'- 1 (2.4)

Sij,Et ---- 1 (2.5)

2.2 Convergence of the Iterative Algorithm

If an algorithm with separation operator W is iteratively applied starting with UB °, then

the same results can be obtained by iterating iV starting with B °. Thus the iteration of

the algorithm reduces to a power iteration for W, just in the space of the amplitudes. The

algorithm may be complicated but the power iteration is very simple (even for nonlinear

H: the same power iteration applies). The power iteration can be analyzed if W is known.

Consider the representation of an algorithm by the iterations on IAT, in which the vector of

amplitudes is normalized at each iteration (not necessary but to keep the norms bounded):

Fourier Power Iterations

B ° = B

For k = 1,2,... do:

1) B k = WB k-1

2) pk__ B /liB ll
3) _Tk = UB _

The following lemma shows towards what converge the Power Iterations and the algo-

rithm, and shows the relative convergence rates.

Lemma 1 In the Fourier Power Iterations algorithm, if E1 is the dominant eigenvector

of W and if B ° is not defective in E1 then:

1) B k converges to El,

2) U k converges to UE1.

3) If B ° is not defective in the first eigenvectors amplifying _,_ and Uj then:

Sij,B k ---+ $ij (2.6)

Proof 1) is obvious since E1 is the dominant eigenvector of W. Thus 2) holds. Let

B0 _----1 a,_E,_ with al¢ 0. Then B k _ k= = _=1 am#_Em. Assume that E_ and Ez

are the first eigenvectors ampli_'ing Ui respectively Uj. The at and al are nonzero by the

hypothesis 3). Then for sufficiently large k the denominator is not 0 and

n a ttkq-lc' '_lK"_n I k= .,/., :
Sij •



In typical situations, e.g., in eigenvalue algorithms, it is desired that U k converges to

4;1. Different. convergence rates can be defined using W, its eigenvalues and eigenvectors,

and the separation factors. Define the asymptotic convergence rate of U k towards U1 by

c, = sup/irnk__ jm2a...x I1/Slj,Bk I (2.7)
B0 .-.

where the B ° in the sup is not defective in any of the eigenvectors.

]'he following corollary is obtained directly:

Corollary In the Fourier Power Iterations U k converges to U1, t'or any B ° nondefective

in El. if and only if E1 = (1, O, .... O)r. In case of convergence, the asymptotic convergence

rate is cl = 1,2l/It_,t.

OBSERVATIONS

The following two examples, when the convergence rate can be very good, motivate the

above discussion:

1) The inverse power algorithm for eigenvalue problems:

AU = UA (2.8)

where [: are the eigenvectors of A associated to the eigenvalues of A = diag(,_l, ..., ,_,_). The

inverse power algorithm iterates the operator (A- (I)I) -1 starting with UB ° and normalizes

the result at each step, for (I) _ )h- This corresponds to a Fourier Power Type algorithm

where I¥ = diag(I/(,\i - q5)), (since (A - OI)-IUB = UWB = U/)), and with another

normalization at step 2) (for which a similar result can be shown). The eigenvectors of W

are Ei = U, and the eigenvalues are Pi = 1/(/_i - (l)). In this case the convergence rate is

very good: - A,I/I¢ - 0:
2) An MG Eigenvalue Cycle, where one may expect a similarly good convergence rate since

the MG cycle can be viewed as an approximation to the inverse power iteration. Such an

operator will be analyzed next, for a Two Level Cycle algorithm.

3 Separation Analysis of the Two Level Cycle

Algorithm

This section derives and analyses the separation operator for a two level MG cycle algebraic

algorithm. The cycle has the following useful features:

1) The algorithm is algebraic and has no relation with any' grid representation, neither the

problems should be finer or coarser, the operators and transfers are general matrices;



2) The algorithm is simultaneous for several solutions, leading to a generalization of the

separation setting from previous section;

3) The simultaneous algorithm has advantages over the corresponding sequential algorithm,

e.g., it can incorporate on any level simultaneous separation techniques;

4) The form of the algorithm is general so that the algorithm and its analysis can be used

not only for eigenvalue problems but for system solvers too.

In this cycle q solutions are treated simultaneously, thus the amplitudes matrix B has

dimensions 7_ × q. The names coarse level and fine level are used only to distinguish the

two levels and because these names are used often in connection with MG algorithms.

3.1 The Two Level Cycle Algorithm

Suppose that A, U, A are n × n matrices, and that A', U', A' are rn x m matrices such

that:

AU = U3, (3.9)

A'U' = U'A' (3.10)

where _;, U' are the eigenvectors of A, A' respectively, corresponding to the diagonal

matrices of eigenvalues A and A'. In case of equal eigenvalues, the eigenvectors will be

chosen to be linearly independent. Let P and R be two relaxation polynomials such that:

P(A)U = UP(A) (3.11)

R(A')U' = U'R(A') (3.12)

There are given the transfer matrices J and I such that:

JU = U'G (3.13)

IU' = UF (3.14)

where J and G are m x n matrices while I and F are n × m matrices.

Assume given an n × q matrix, B, a diagonal q x q matrix (I), and an n × q matrix

U _ = UB of initial solutions.

Consider the following Two Level Cycle:

Two Level Cycle (U 1, (:)

Input [,a = UB

1) Relax U 2 = P(A)U 1

2) Compute the residual: _q = U2O - AU:



3) Transfer the residual: S'= JS

4) Transfer the solution: _[,1 ____j(/2

5) Compute the FAS right hand side: T' = R(A')U '1 + JS

6) Solve (or Relax) the coarse level equation: R(A')U '_ = T'

7) FAS - Correct the fine level solution: U 3 = l)2 + I(U,2 _ jU 2)

8) Relax: (_ = P(A)_ 73

Output bT

OBSERVATIONS

1) The step 6) can be considered as a relaxation: U '2 -- R(A')-IT '

2) The algorithm can be continued on other levels in the same way.

3) A projection can be introduced at certain steps, multiplying the solution by a q × q

matrix E. Since E depends on the solutions, the algorithm would become nonlinear in B,

making the next analysis more difficult.

4) Different relaxations can be used at steps 1) and 8).

5) The FAS (Full Approximation Scheme) transfers at steps 5) and 7) follow the scheme:

the problem F'(U') = T' is an FAS transfer of the problem F(U) = T if T' = F'(JU) +

J(T - F([:)): and the corresponding FAS correction reads U = U + I(U' - JU), see [2].

3.2 The Two Level Cycle Separation Operator

This subsection computes the separation operator W for the algebraic Two Level Cycle.

The two level algorithm transforms the initial solution U 1 = UB into the final solution

[-_ = _/). Since the columns of U are independent, the/_' is uniquely determined for the

given C', allowing to define as in previous section

The Two Level Cycle Operator W by:

WB =/) (3.15)

Denote by I,_ the n × n identity matrix. Assume that R(A _) is invertible and denote its

inverse by R-I(A'). The operator W can be computed directly from the above algorithm

and from (3.11-3.14) and is given by:

Theorem

1) The Two Level Cycle Separation Operator W is def/ned by:

I IB = P(A)( P(A)B + FR-I(A')G(P(A)BrP - AP(A)B) ) (3.16)

2) If q= 1 then

l l = P(A)( I,_ + FR-I(A')G(OpI_ - A) )P(A) (3.17)
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Proof Since/y1 = U/3, the relations (3.11-3.i4) imply:

U 2 = P(A)U 1 = P(A)ITB =/:,rP(A)B

,q = U2¢ - AU 2 = U(P(A)B¢ - AP(A)B) = UX

where

The transfers give:

x = P(A)B - AP(A)B

(3.18)

(3.19)

(3.20)

Two Level Iterations

Input _T1 : _T_,, (I)

for _"= 1,2,... do:

1) Two Level Cycle (U k, U TM )

U '1 = JU 2 = JUP(A)B = U'GP(A)B (3.21)

JS = JUX = U'GX (3.22)

and solving the coarse level equation:

R(A')U'2 = R(A')U '1 + JS (3.23)

U '_ = U 'l + R-I(A')JS = JU 2 + R-I(A')JS = JU 2 + U'R-_(A')GX (3.24)

Then the FAS - Correction reads:

,, T! -1 t , rV 3 = U 2 + I(U '_ - JU 2) U 2 + I_ R (A)G]( (3.25)

U 3 = U(P(A)B + FR-I(A')GX) (3.26)

and the final relaxation implies:

(" P(A)U 3 = UP(:\)(P(A)B + FR-a(A')GX) U[_ (3._c)

Hence:

B = P(A)(P(A)B + FR-I(A')GX) (3.28)

Substituting X, the point 1) of the theorem is obtained:

WB =/_ = P(A)( P(A)B + FR-I(A')G(P(A)B(P - AP(A)B) ) (3.29)

For the case q = 1, (I) is a scalar and commutes with P(A)B thus point 2) results.

Iterating the Two Level Cycle the following algorithm is obtained:



2) Normalize the columns of U k+l

OBSERVATIONS

1) For the Two Level Iterations algorithm holds a Fourier Power Iterations algorithm as

described in section (2).

2) As in the Corollary of Lemma l, for q = 1, the convergence criteria is obtained:

Lemma 2 In the Two Level Iterations, _,,k converges to U1, for any initial U 1 nondefec-

tire in Ul, if and only if IV has the dominant eigenvector (1, 0, ..., 0). The single difference

consists in the normalization of B t by B k = Bk/c _ where c k is a constant, for normalizing

the solutions.

3) Denoting B = (bl, ..., bn) _, the k component of the vector WB is:

rl m

(ll'B)k = P:(Ak)bk + P(Ak) _ Z(FkiF_-I(AI)Gij)((_ - Aj)P(Aj)bj (3.30)
j=l i=1

This formula will be used in the following sections.

3.3 Separation Factors in case of Mixing

In this paragraph the separation factors are analyzed in a case when the first two vectors

of U are mixed by W during the transfers, but are not mixed with other vectors, i.e., the F

and G have the structures from (3.31, 3.32). It will be shown that the mixing damages the

separation, nevertheless the algorithm may be efficient for proper choices of relaxations.

Assume that q = 1, B = (bl,b2,0,...0) T and:

G

1 G12 0...0

(;21 1 0...0

0 0

0 0

(3.31)

1 F12 0...0

F21 1 0...0

0 0

o,, _¢

0 0

(3..32)



The first two components of WB will be:

(I'VB)I

(II'B)2

= P2(A1)b,4-P(A1)((/I_-I(A"I) Jr-F12R-l(A_2)G21)(£5- A1)P(A1)bl 4-

+(R-I(A'I)G,2 + F12R-1(A2))(£5- A2)P(A2)b2 (3.33)

= P2(A2)b2+ P(,\2)((F21R-1(A'l) + R-l(A_)G21)(£5- ,%)P(A1)b, +

+(F21R-' (A'1)G12+ R-I(A_))(£5 - A2)P(A2)b2 (3.34)

Assume that the Richardson relaxation is used for A:

such that

P(A) = I + _,(A - £5)

P(Ak) = 1 + _(Ak - £5) _ 1

and the inverse power iteration is used for A':

R(A') = A' - £5,

To simplify the analysis it is assumed that:

£5 _ :\1

(3.35)

(3.36)

!

R(Ak) = A k - £5 (3.37)

(3.38)

P(Ai) _ 1 (3.39)

(£5 - A2)/(A; - £5) _ -1 (3.40)

A' 1 _ Z 1 (3.41)

The next approximation is obtained for the first two components (the rest of the matrix is

not relevant and ignored further):

I/VB _ (3.42)
0 "_F_I b2

(3.43

Where

-_,=G1_(£5- &)/(A; -£5)

If G12 is not zero then _' may be large since A'1 - £5 is small. The two eigenvalues of

the above 1¥ are pl = 1 and tl2 = 7/72l corresponding to the eigenvectors E1 = (1,0) r

and E2 = ((-'_+ F12)/(1 - _F21), 1) r. If 1 > [P2t then iterating the two level cycle, the

solutions UB k will converge to/.71, by Lemma 2. If I < tFt2] then the iterations will converge

9



to ([7 l, _[T2)E2. In the case 1 < [p2[, the separation can be improved by:

1) improving the relaxation or the transfers (e.g., preconditioning the transfers or using

higher order transfers), these leading to 1 > t#21;

2) treating simultaneously the vectors U1 and [_ and separating them by a Rayleigh-Ritz

type projection as shown for example in [5] [8] and analyzed in [10].

The asymptotic convergence rate in the case 1 > [1'21 is

[tt2/Pl] = 11_2t< 1 (3.44)

which can be good, e.g., if G12F21 is small, but can be close to 1 if ? is large. Nevertheless

the convergence in the first few cycles may be very good as shown by the relative separation

factor. If at the beginning b 1 = b 2 = 1 and "_ is large, then s12,B = (1 + 7 - F12)/(_/F21) _

1/F21. In this case the separation factor of/_T1 relative to [)2 is approximately 1/F_1 which

may be very good. A better separation is obtained if G12 _ 0, when -_ _ 0 thus the

separation factor is (1 - F12)/(_F12) ,_ 2. In the latter case, when low mixing appears

due to (_12, the cycle separates well the first eigenvector from the second one in the first

iteration. An important observation is that in this case the role of the relaxation by P is

negligible, the good separation being due mainly to the good transfer G12 _ 0 and to the

good approximation of the eigenvalue A1 _ _.

3.4 Separation Factors for Decoupled Components

To show the good efficiency of the MG cycle in the case when the eigenvectors are not

mixed during the transfers, the previous example in which the mixing coefficients are 0 is

considered:

GI2 = G21 = F12 = Y21 = 0 (3.45)

A more accurate estimate of the relative separation factor for bl = b2 = 1 and by (a.aa,3.34)
is:

[I-'_(_-A1)/(A'I-_P)I/[I-'[-(_-A2)/(A2-O)] = (A'I-A1)(AI-O) (3.46/

which is large in the following assumptions which are met especially in MG algorithms

where • is obtained from coarser levels by an FMG algorithm [2] [5] [6]:

A_ - A2 _ 0 (3.47)

(A', - &)/(a; (3.4s)

- g'l >>0 (3.49)

10



OBSERVATION

The efficiency of the two level cvcle may be very good also in case of close eigenvalues,

when (I) approximates well the eigenvalue :\1 and when the two levels have close eigenvalues

t'\_ _ "\2. This is an explanation of the highly, accurate separation obtained in numerical

tests for problems presenting very close eigenvalnes [4] [5] [6] [8]. The good separation

obtained by the MG cycle may also explain why projections were not required on fine

levels even for clusters of very close eigenvalues [4] [5] [6] [8].

4 Example of Fourier Analysis of the Two Level

Separation Operator

In some cases, especially for discretizations of partial differential equations on regular grids,

the two level separation operator can be computed and analyzed using for U Fourier compo-

nents, as shown in the next example. This provides insight for the design of the algorithms

and to the prediction of the algorithms performance.

4.1 The Two Level Separation Operator

The two level separation operator W for the algebraic two level cycle, in the common

assumption 7_ = 2m, is presented next. For 77= 2rn the matrices F and G have the forms

F = (F1,F2) T, G = (G1,G2), with 777 × m matrices F1, /:2, G1, G2. Further, Id will

denote the identity matrix. It is assumed q = 1, so W has the form (3.17). Denote

A= ( A10 A20) (4.50)

where A1, A2 are rn × rn diagonal matrices. In this case (3.17) provides:

W= (I4_1, I'I_12) (4..51)W21 W22

with

II11 = P(A,)(Id+ F1R-a(A')G,(_Id- A1))P(A1)

1'1'_2 = P(A2)(Id+ F2R-'(A')G2((_Id- A2))P(A2)

l, V12 = P(A 1 )F1R-I(A')G2((_Id - A2))P(A2)

l i2a = P(A2)F2R-_(A')G_(_Id- A1))P(A1)

(4.52)

(4.53)

(4.54)

(4.55)

11



4.2 The Two Level Separation Operator for the SchrSdinger

Eigenvalue Problem

The two level separation operator for the SchrSdinger Eigenvalue Problem in I-D, with

periodic boundary conditions, is derived further. For 2-D and 3-D similar derivations hold.

The problem is:

AU = UA (4.56)

on the interval [0, 27r]. The operators A and A' are the discretizations of the Laplacian,

with the stencil ( 1 -2 1 )/h _, on two grids with 2rn (respective m) equally spaced points.

The complex eigenvectors and the corresponding eigenvalues are considered:

_:k(1) = exp(i2rckl/2rn),

_£(j) = exp(i2rckj/m),

The eigenvalues are negative, ranging from -_0 = 0 to the size of )_m

h = 27r/(2m) is the fine mesh size. The eigenvalues satisfy

2

Ak = - _-ff(1 - cos(27c k/2rn )),

2

_ = -'2"tn)----5(1 - cos(2_ /m )),

k = 0, .... 2m - 1 (4.57)

k = 0, ..., m- 1 (4.58)

=-4/h 2, where

,\_-a- = ,\_+k, hk = )_,_-k, k = 0,...,m - 1 (4.59)

The real and imaginary parts of the complex eigenvectors are the real eigenvectors:

_(1) = cos(i2rckl/2m), /," = o, .... 2m- 1 (4.60)

U_(1) = sin(i2rckl/2m), k = 1,...,2m- 1. k ¢ m (4.61)

where ( 2,_-k_ = (;_ and /;ri2m_k = __[;i_,,_. The analvsis_ can be done for the real eigenvectors

but it is more convenient computationally to use the complex ones. The real eigenvectors

can be used in programs which build W and analyse the separation.

The transfer J is the full weighting operator with stencil ( 1 2 1 )/4. I is the linear

interpolation operator. Then the matrices F1, F2, G1, G2 are diagonal and all elements of

F and G are zero except for k = 0,.... rn- 1"

(-;kk = (1 + cos(rrk/m))/2 (4.621)

Gk.k+,_ = (1 -- cos(Trk/m))/2 (4.63)

Fkk = (1 + cos(Trk/m))/2 (4.64)

Fk+,_,_ = (1 - cos(Tck/rn))/2 (4.65)

since the transfers imply for k = 0 ..... rn- 1, j = 0,...,m- 1:

(/_k(2j - 1)+ 2_:k(2j)+/Tk(2j + 1))/4 = U£(j)(1 + cos(Trk/m))/2 (4.66)

12



(Uk+m(2j-- 1) + 2Uk+_(2j) + Uk+_(2j + 1))/4 = U£(j)(1 -- cos(rck/rn))/2

G(2j) "= _,_(j )

r! .

Uk(2j + 1) = (bk(j)+ G(J + 1))/2

(4.67)

(4.68)

(4.69)

thus

JUk ¢t ,= _..'kGkk, /c=0,...,m--1

r r! _'

.J[.._.+_ -- _kGk,k+m, /C = 0, ..., m --1

HT£ = Gkb2 + F_+,_,kUk+,_, k = 0,...,m- 1

Then the elements of the operator W become:

[,I,11 --_ diag(P(,_k)(i q- FkkR-l(,_tk)Gkk((I) -- /_k))P(/_k))

I142 = diag(P(/_k+m)(l + Fk+m,kR -1 ' '(Ak)Gk,k+m(¢ -- _k+._))P(Ak+m))

1'1"12 = diag( P( Ak -1 , ,)FkkR (_)Gk,k+_((I) - Ak+_)P(Ak+,_))

w21 = diag(P(Ak+,_)&+m,kR-_(A'k)&_(¢- Ak)P(_k))

(4.70)

(4.71)

4.72)

4.73)

4.74)

(4.75)

(4.76)

4.3 Analysis and Optimization of the Two Level Cycle

The W operator (4.73-4.76) is used to analyse and optimize the two level cycle algorithm.

R is taken the shifted inverse power operator

/t_-l(/_) = 1/(_i. _ qp) (4.77)

The relaxation operator is taken

(4.78)

then

Assume that

P(Ak) = 1 + _(Ak - _) (4.79)

_. = o_/IA_. I = ah2/4 (4.80)

where c_ will be chosen in a convenient way. To analyze the relaxation note that the

asymptotic separation factor of Ui relative to _ and to the relaxation is

tl+_(A, - A)l II,L_I + _(A, - .\)1
8ij ---- =tl + _,(a5 - a)l Ilam=.l+ o'(,_j- a)I

a(,\j - a_)
ll IAmo_l+ o(Aj - A)I

(4.81)

(4.82)
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It follows that if Ai _ Aj then sij _ 1 thus the relaxation will be very slow in separating

Ui from b_. If Ai is close to A, and Aj is close to Am_x then s_j _ ]1 - c_/(1 + c_)l. Thus the

relaxation is more efficient in separating far clusters. Within clusters another separation

technique, like a Generalized Rayleigh Ritz projection, or MG projections, or an MG cycle is

required, see for example [5] [8] [10]. An essential property of the relaxation is the damping

of errors coining from eigenvectors which are not well represented on coarser levels. This

is called the smoothing property of the relaxation. If Ui is a smooth vector and /J_ is a

component of the error, then /)_ is damped by each relaxation with the separation factor

Next computation finds an c_ such that the separation factors s0k > fl > 1 for all

nonsmooth components b'%, assumed A = A0 = 0. Recall from (4.57) that the nonsmooth

components [_k have the frequencies 7r/2 _< 0 = _rk/m <_ 37r/2 corresponding to m/2 <_

k < 3m/2 and to IAmo=l--tA I= 4/h ,2. Then

= 12/(2 - a(1 - coa(Tck/m)) I (4.83)

The extreme values of ISokl are obtained for 27rk/2m = 0 = r:/2 and 7:, thus k = m/2

respective m, for which [So,,�21 = 12/(2- a)l and ]Soml = I1/(1 -c_)l. Both _r/2 and _-

components can be separated by relaxation from Uo with the factor I,So_/21 = ISoml = 3 if

c_ = 4/3 (4.84)

Moreover, one ralaxation will damp all high frequency components by a factor larger than

1/3. If a multilevel cycle damps well the smooth components of the errors, on coarse lev-

els where these components can be well represented, and does not amplify the oscillatory

components, then the cycle should have a separation factor of (1/3)", for/_ relaxations per-

formed on the fine level. This factor may not be obtained in case of mixing of eigenvectors,

and in the case when not all smooth components are damped well, e.g., the frequencies

close to the frequencies of the desired eigenvectors, are damped slowly by the relaxation.

OBSERVATIONS

1) The II'B is

Thus if _I'_l is not small enough then the large coefficients of the smooth components, B1,

of order 1, will imply large coefficients /)2 of the nonsmooth errors. The factors of 1,1"_1

which can be improved in (4.76) are

P(,\k+m )Fk+,_.k (4.86)

14



This can be doneby changingtile valueof a, say" close to 2, to damp more efficiently the

frequencies close to a-/2, 3 /2. which are multiplied with 1/2 by transfers.

2) The relaxation can be improved also using a combination of relaxations with different

values of a which will damp different frequencies.

3) Changing the relaxation with one having better smoothing properties, of GS type,

showed large improvements in computer experiments.

4) Preconditioning of the transfers can be used to reduce the amplitudes of the oscillatory'

components. For example smoothing can be introduced before the transfer, say using a sten-

cil ( 1 2 1 )/4 which multiplies the Fourier components with the factor (1 + cos(rck/m.))/2.

5) Higher order interpolations can be used to reduce the Ga.,k+,_ terms.

6) The algorithm can be optimized using a subroutine which computes the matrix 1¥, for

different parameters such as ,\, a. number of relaxation, coarse level relaxation type. An

optimization search for parameter combinations providing an efficient multilevel cycle can

be easily performed having such a subroutine. An observation which reduces much the

analysis of I¥ is that I|: has the desired eigenvector (1,0, .... 0) T iff its first column is a

multiple of this vector. An optimization approach can be directed towards the treatment

of the first column.

7) An analysis similar with the one performed for the first vector can be performed for

the first cluster. The elements below the block corresponding to this cluster should be 0 to

avoid mixing with other clusters. The block corresponding to the cluster may have nonzero

subdiagonal elements. This suggests that a separation inside the cluster is required. This

separation can be performed on coarse or on fine levels.

8) The analysis of 1¥ can show what clusters have to be completed and which components

have to be treated simultaneously. This is important for robustness and efficiency. It is

simple to observe that the algorithm can be very efficient in converging to a complete clus-

ter, treated simultaneously, while it will fail if it will treat only one of the components. A

comparison between a simultaneous and a sequential algorithm can be performed using I.V.

9) If a cluster mixes with a second cluster it is an indication to include the second cluster

in computation and to treat it simultaneously with the first one.

10) A complete cluster, which does not mix with another cluster is a good basis for a stable

subspace technique.

11) Divergence of some components does not imply that the algorithm is not efficient. Sep-

aration is important. For example, for finding the second cluster one may have to use in

computations the first cluster too. The first cluster may" diverge but if the two clusters get

well separated from the remaining components, then an algorithm treating both clusters

simultaneously should be efficient.

1.5



12) Divergencecanbe treated usingdifferent relaxations,e.g., which amplify most speci-
fied components.

13) The computationof l,Vand theoptimization of the algorithm using14_canbeefficiently
performedoncoarselevels. The computationof W on fine levels is usualy a very expensive

task but generally not needed, a coarse version of W being sufficient for optimization.

14) The relative separation factors may be important in an FMG algorithm, and not as

much the asymptotic factors. In an FMG algorithm for computing bY, the amplitudes B

come aheady close to (1, 0 .... ,0) so that only the relative separation of certain components

may be relevant, usually the ones which mix with U1.

15) The separation analysis can be useful also for cases when W is not linear. Two such

cases are when a projection is used in the algorithm, and when W is a composition of

separation of operators some of which can be analysed.

16) Tile computation of I.V can be performed in different ways. The presented way, i.e.,

using its analytic form, may not be the best one. A way to compute easily W for different

changes of the algorithm is required. One way is to compute directly W using the action

of the algorithm on a basis, e.g., on the columns of U or on the columns of the identity

matrix. Another way is to compute W as a composition of simpler mappings.

17) The optimization can be performed by an MG procedure. This is an optimization

problem with several local minima usually. See [11] for an outline and application of an

MG optimization approach usable for several local minima.

18) The optimization of the algorithm using W leads to robust algorithms. The asymptotic

convergence rates can be accurately predicted. W%rst cases can be found.

The behavior predicted by I_V was accurately reproduced by a program implementing

the two level algorithm.
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